
Getting Started

with the

AMX™ Multitasking Executive

First Printing: June 16, 1993
Last Printing: November 1, 2007

Copyright © 1993 - 2007

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

Getting Started with AMX KADAK i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates during the product's
initial support period. For technical support beyond the initial period, you must purchase
a Technical Support Subscription. Contact KADAK for details. Please keep us informed
of the primary user in your company to whom update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail. KADAK reserves
the right to charge for technical support services which it deems to be beyond the normal
scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii KADAK Getting Started with AMX

Copyright © 1993-2007 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, B.C., CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability and fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

Getting Started with AMX KADAK iii

GETTING STARTED WITH AMX
Table of Contents

Page

1. Welcome to AMX 1

1.1 Introduction to AMX .. 1
1.2 Installing the AMX Software ... 2
1.3 Installing the AMX Prototyping System (TAPS) 5
1.4 Installing the KwikLook Fault Finder .. 7
1.5 Choosing Your Toolset .. 9
1.6 Program Groups ... 11
1.7 Uninstalling AMX, TAPS or KwikLook ... 12

2. AMX Sample Program 13

2.1 Sample Program Operation .. 13
2.2 Building the AMX Sample Program .. 20
2.3 Using a Toolset IDE ... 24
2.4 The TAPS Sample Program ... 25

3. Creating an AMX Application 27

3.1 The AMX Configuration Process ... 27
3.2 Building Your AMX Application ... 31
3.3 A Make File for AMX Applications .. 34
3.4 Using the AMX Prototyping System (TAPS) 36

4. Debugging an AMX Application 39

4.1 Using the KwikLook Fault Finder ... 39
4.2 Breakpoints and Tracing .. 42
4.3 Debugging the Launch ... 43
4.4 Debugging Caveats .. 45

5. AMX Programming Hints 47

5.1 Application Portability ... 47
5.2 AMX Stack Allocation ... 48
5.3 Choosing a Synchronization Method ... 50
5.4 AMX Caveats ... 53
5.5 Interrupt Latency .. 56

6. C Programming Primer 57

6.1 C Programming Practices ... 57
6.2 Structure Packing ... 59
6.3 Reentrancy and Concurrent Execution ... 60
6.4 Using the C Runtime Library ... 62
6.5 Bootstrap and C Startup Code .. 64

iv KADAK Getting Started with AMX

This page left blank intentionally.

Getting Started with AMX KADAK 1

1. Welcome to AMX

1.1 Introduction to AMX
Welcome to real-time software development with the AMX™ Multitasking Executive.

Chapter 1 of this "Getting Started" guide will lead you through the installation process
and provide you with a roadmap to the installed AMX software components and online
documentation.

Chapter 2 describes a simple AMX Sample Program which you can use to quickly get
AMX up and running in your development environment. The sample can be used as a
starting point for the construction of your own AMX application as described in
Chapter 3. The AMX Prototyping System (TAPS™) lets you test much of your AMX
application on a Windows® platform when your target hardware is not available.

Chapter 4 will introduce you to the KwikLook™ Fault Finder, the Windows DLL that adds
AMX task-awareness to many of the popular debuggers supported by KADAK. Also
described are some of the debugging techniques recommended by KADAK's experienced
technical staff for testing real-time software systems.

Chapter 5 offers hints for using the AMX kernel to best advantage and suggests
guidelines for proper application design. Chapter 6 discusses some of the C/C++ pitfalls
that newcomers to multitasking software often face for the first time.

Parts List

The AMX Multitasking Executive software is delivered to you in an encrypted form on
the AMX CD-ROM which is usually enclosed inside the front cover of the hard copy
AMX Reference Manual.

The printed manual consists of five separate guides: this Getting Started guide, the AMX
Tool Guide, the AMX Target Guide, the AMX User's Guide and the KwikLook User's
Guide. The Tool Guide and Target Guide are different for each target processor family.
The other guides are common to all 32-bit versions of AMX.

The AMX manuals for all processor families are directly accessible in Adobe Acrobat®
PDF format on the AMX CD-ROM. During installation, you will be given the option of
installing the manuals for easy online access when using AMX.

The AMX Prototyping System (TAPS) is delivered on the AMX CD-ROM. The TAPS
User's Guide in HTML format can be viewed with your document browser. It is directly
accessible on the CD-ROM and is always installed with TAPS for online viewing.
A printed copy is not provided.

The KwikLook Fault Finder is delivered on the AMX CD-ROM. The KwikLook User's
Guide in Adobe Acrobat PDF format is directly accessible on the CD-ROM and is always
installed along with the AMX manuals for online viewing.

The most recent revision of each manual is always available from KADAK's website at
www.kadak.com.

2 KADAK Getting Started with AMX

1.2 Installing the AMX Software

Before You Start

The installation utility will not allow you to install AMX if it detects an existing
installation of the same product without first warning you and giving you the option of
deleting the previous installation before proceeding. For example, you will get such a
warning if you are updating your version of AMX with a newer release.

To preserve an existing installed copy of AMX, rename or move the installation directory
of the previous copy of the product before installing the new version.

Installing AMX

AMX is installed by running the InstallShield® SETUP.EXE program located in the root
directory of the CD-ROM. From the Windows Start, Run... menu, type D:\SETUP.EXE
(where D: is your CD-ROM drive letter) and press Enter. Alternatively, browse the root
directory of the CD-ROM and double click on the SETUP.EXE filename or icon.

During installation you will need your AMX CD serial number and product installation
key, both of which are recorded on the AMX Parts List packaged with the CD-ROM.
They are also recorded on a label attached to the CD-ROM case. The CD serial number
is also printed on the face of the CD-ROM.

The CD serial number identifies your actual AMX CD-ROM, not the products which it
contains. It is the product installation key which identifies the specific AMX product
which you are entitled to install from the CD-ROM.

The setup utility will lead you through the installation process. You may be requested to
identify the software development tools which you plan to use for development. Only the
tools specifically supported by KADAK will be listed. You can select one or more of the
listed toolsets. If you are not sure which tools you will be using, select them all. After
installation, you can always delete support for the unused tools. The supported toolsets
are identified in Chapter 1.5.

The installation process will copy the product files into a directory of your choice on the
disk drive of your choice. AMX files will be installed in subdirectory AMXnnn where the
number nnn comes from the KADAK part number PNnnn-1 used to identify the AMX
product.

Directory Part Product
AMX382 PN382-1 AMX PPC32
AMX402 PN402-1 AMX 4-ARM
AMX422 PN422-1 AMX 4-Thumb
AMX442 PN442-1 AMX MA32
AMX512 PN512-1 AMX CFire
AMX532 PN532-1 AMX 68000
AMX722 PN722-1 AMX 386/ET

Getting Started with AMX KADAK 3

Installed AMX Software Components

The AMX installation directory AMXnnn will include the following subdirectories:
CFGBLDW AMX Configuration Builder for Windows
ERR Error directory used by make process
MAKE AMX make utilities
MANUALS AMX documentation
TOOLXX Toolset dependent files for toolset XX
TOOLXX\CFG Configuration template files
TOOLXX\DEF AMX C header and assembler definition files
TOOLXX\LIB AMX libraries and object files
TOOLXX\SRC AMX kernel and manager source files
TOOLXX\SAMPLE AMX Sample Program files

A complete list of the installed AMX files will be found in the product manifest file
MANIFEST.TXT, a text file present in each TOOLXX toolset subdirectory. A separate
manifest file is provided for each toolset because there are minor differences in the
complement of files required by different tools.

Once AMX has been installed, you will find the following AMX software components in
your AMX installation directory.

The AMX Configuration Builder is the Windows utility which you will use to specify
the AMX features required by your application and the target processor characteristics
which AMX must support.

The AMX Library is installed ready for use with each of the software development
toolsets which KADAK supports.

Source code for the AMX Library is also installed so that if, for some reason, you must
rebuild the AMX Library, you can do so. Your application will also require access to the
AMX header files to compile or assemble modules which reference AMX procedures.

An AMX Sample Program is provided as an example of a working AMX application.
This sample application is ready for use even if all you have is just a target processor and
memory. It will therefore run with little, if any, modification using your debugger's
target processor simulator. A variation of the AMX Sample Program is also provided for
most of the hardware evaluation boards on which KADAK has tested AMX.

4 KADAK Getting Started with AMX

Installed AMX Manuals

If you install the AMX documentation, this Getting Started manual and the following
manuals, all in Adobe Acrobat PDF format, will be installed in your AMX installation
subdirectory AMXnnn\MANUALS. All of these manuals are then accessible via Windows
links in the AMX program group created when AMX is installed. These manuals are also
accessible directly on the AMX CD-ROM.

The AMX Tool Guide provides guidance for the proper use of AMX with each toolset
with which AMX has been tested. The AMX Tool Guide specifies the command line
switches which are required when using the command line tools to compile or assemble
modules, create libraries and link AMX applications.

The AMX Target Guide describes hardware specific requirements and programming
considerations that apply to the target processor with which AMX is being used.
Processor exceptions, device interrupts, clock drivers and caching issues are all
discussed. This guide also illustrates how the AMX Configuration Builder is used to
specify the target parameters which adapt AMX to your specific hardware environment.
All processor dependent procedures in the AMX Library are documented in this guide.

The AMX User's Guide is the chief AMX programming manual. It describes the AMX
kernel, its managers and their use. This guide illustrates how the AMX Configuration
Builder is used to specify the characteristics of the AMX application you intend to create.
It also includes a description of each AMX service procedure, its calling sequence and,
where applicable, an illustrative example of proper usage.

The following auxiliary documentation, in Adobe Acrobat PDF format, is also provided
with AMX. These manuals are not included in the hard copy AMX Reference Manual.

The AMX Timing Guide discusses general timing issues related to the use of AMX.
Timing metrics generated for specific boards and software development toolsets are also
provided. These timing figures can be used as guidelines to expected AMX performance,
but are not to be construed as product specifications.

The AMX Conversion Guide describes how to convert AMX applications developed
using earlier versions of AMX to operate with the current AMX release. This manual
will only be of interest if you are converting from AMX 86 v3.0x, AMX 386 v1.0x or
AMX 68000 v2.0x to any of the current 32-bit AMX implementations.

Getting Started with AMX KADAK 5

1.3 Installing the AMX Prototyping System (TAPS)

Before You Start

The installation utility will not allow you to install TAPS if it detects an existing TAPS
installation without first warning you and giving you the option of deleting the previous
installation before proceeding. For example, you will get such a warning if, when
updating AMX, you attempt to reinstall TAPS from the CD-ROM containing the newer
release of AMX. Do not reinstall TAPS unless specifically directed do so by the update
instructions packaged with the new release of AMX.

To preserve an existing installed copy of TAPS, rename or move the installation directory
of the previous copy of TAPS before installing the new version.

Installing TAPS

TAPS is installed separately from AMX. Follow the same procedure as you used to
install AMX. Run the InstallShield SETUP.EXE program located in the root directory of
the AMX CD-ROM.

Use the same CD serial number as used for AMX but use your TAPS installation key.
Both are recorded on the AMX Parts List packaged with the AMX CD-ROM. They are
also recorded on a label attached to the CD-ROM case. The CD serial number is also
printed on the face of the CD-ROM.

The CD serial number identifies your actual AMX CD-ROM, not the products which it
contains. It is the TAPS installation key which permits you to install TAPS from the
CD-ROM.

The setup utility will lead you through the installation process. The installation process
will copy the TAPS files into a directory of your choice on the disk drive of your choice.
TAPS files will be installed in subdirectory TAPS302.

6 KADAK Getting Started with AMX

Installed TAPS Software Components

The TAPS installation subdirectory TAPS302 will include the following subdirectories:
CFG AMX Configuration Builder and template file
MANUAL TAPS online documentation in HTML format
DEF AMX C header files
LIB AMX Library
SAMPLE AMX Sample Program as a Visual Studio project

A complete list of the installed TAPS files will be found in the product manifest file
MANIFEST.TXT, a text file present in the TAPS installation directory TAPS302.

The following TAPS software components will be installed.

The AMX Configuration Builder is the Windows utility which you will use to specify
the AMX features required by your application. Since TAPS does not require target
hardware, there will be no need to specify your target processor characteristics.

Source code for the TAPS compatible AMX C header files is provided so that you can
use Microsoft® Visual C++ to compile your AMX application modules which reference
AMX procedures.

The AMX Library for TAPS will be used to build an AMX application from within the
Microsoft Visual Studio IDE.

The AMX Sample Program is provided as a Microsoft Visual Studio project. You can
build this sample within the Visual Studio IDE and see first hand how easy it is to create
and test a working AMX application using TAPS on a Windows platform.

Installed TAPS Manual

The TAPS User's Guide in HTML format will be installed in your TAPS installation
directory. Use your document browser to view file TAPS302\MANUAL\TAPS302.HTM.
This manual is also directly accessible on the AMX CD-ROM. A printed copy is not
provided.

The TAPS manual is always accessible via a Windows link in the TAPS program group
created when TAPS is installed.

Getting Started with AMX KADAK 7

1.4 Installing the KwikLook Fault Finder

Before You Start

The installation utility will not allow you to install the KwikLook Fault Finder if it detects
an existing installation without first warning you and giving you the option of deleting
the previous installation before proceeding. For example, you will get such a warning if
you are updating your version of KwikLook with a newer release.

To preserve an existing installed copy of KwikLook, rename or move the installation
directory of the previous copy of KwikLook before installing the new version.

Installing KwikLook

KwikLook is installed separately from AMX. Follow the same procedure as you used to
install AMX. Run the InstallShield SETUP.EXE program located in the root directory of
the AMX CD-ROM.

Use the same CD serial number as used for AMX but use your KwikLook installation key.
Both are recorded on the AMX Parts List packaged with the AMX CD-ROM. They are
also recorded on a label attached to the CD-ROM case. The CD serial number is also
printed on the face of the CD-ROM.

The CD serial number identifies your actual AMX CD-ROM, not the products which it
contains. It is the KwikLook installation key which permits you to install KwikLook from
the CD-ROM.

The setup utility will lead you through the installation process. The installation process
will copy the KwikLook files into a directory of your choice on the disk drive of your
choice. KwikLook files will be installed in subdirectory KWK302.

During the installation, you will be asked to identify the debugger with which you plan to
use KwikLook. Some of the KwikLook files may be copied to your debugger's installation
directory. In some cases, the duplicates installed for the debugger will be renamed to
satisfy the debugger's DLL naming requirements or to permit KwikLook to identify the
version of AMX which KwikLook must support.

Toolset Tip

You can install KwikLook for more than one task-aware
debugger. For example, if you have installed AMX PPC32
to support both MetaWare and Metrowerks tools, then you
can install KwikLook for both SeeCode and CodeWarrior.

8 rev11 KADAK Getting Started with AMX

Installed KwikLook Software Components

The KwikLook installation subdirectory KWK302 will include the following subdirectories:
HOST KwikLook DLL and support files
MANUAL KwikLook User's Guide in Adobe Acrobat PDF format

A complete list of the installed KwikLook files will be found in the product manifest file
MANIFEST.TXT, a text file present in the KwikLook installation directory KWK302.

Installed KwikLook Manuals

The KwikLook User's Guide in Adobe Acrobat PDF format will be installed in your
KwikLook installation directory. This manual is also directly accessible on the AMX
CD-ROM. A printed copy is included with the AMX Reference Manual.

The KwikLook Help Manual will be installed in your KwikLook installation directory. This
manual can be viewed using the Windows help facility. It is also directly accessible from
within KwikLook in a context sensitive manner. A printed copy is not provided.

The KwikLook manuals are always accessible via Windows links in the KwikLook program
group created when KwikLook is installed.

Supported Task-Aware Debuggers

AMX Target Toolset Task-Aware Debugger
Part XX

PN382-1 PowerPC DA Diab-SDS SingleStep
PN382-1 PowerPC ME Metrowerks CodeWarrior
PN382-1 PowerPC MW MetaWare SeeCode

PN402-1 ARM AR IAR Systems C-SPY
PN402-1 ARM ME Metrowerks CodeWarrior
PN402-1 ARM MW MetaWare SeeCode
PN402-1 ARM RV ARM Ltd. RealView
PN422-1 Thumb AR IAR Systems C-SPY
PN422-1 Thumb ME Metrowerks CodeWarrior
PN422-1 Thumb MW MetaWare SeeCode
PN422-1 Thumb RV ARM Ltd. RealView

PN442-1 MIPS32 MW MetaWare SeeCode

PN512-1 ColdFire DA Diab-SDS SingleStep
PN512-1 ColdFire ME Metrowerks CodeWarrior

PN532-1 68000 DA Diab-SDS SingleStep
PN532-1 68000 ME Metrowerks CodeWarrior

PN722-1 80x86 PD Paradigm Debugger (protected mode)

Getting Started with AMX KADAK rev11 9

1.5 Choosing Your Toolset
The AMX Multitasking Executive has been built on a PC running Microsoft Windows
using the software development tools described in this chapter. Preconstructed AMX
Libraries are installed ready for your use with these toolsets. The AMX Tool Guide will
identify the most recent release of each toolset tested by KADAK.

To construct your embedded AMX application, you will require a C or C++ compiler, an
assembler, a librarian (optional), a linker and/or locator and a remote debugger. The
vendors listed below provide these tools.

KADAK assigns a unique two or three character mnemonic XX called a toolset id to
identify each toolset combination with which AMX has been built and tested.

When AMX is installed, the AMX files required for use with toolset XX are installed in a
toolset subdirectory named TOOLXX. Since the toolset ids are unique, there will be
multiple TOOLXX subdirectories present if you installed support for more than one toolset.

To remove support for toolset XX, delete its toolset subdirectory TOOLXX. Doing so will
have no adverse effect on any of the remaining toolset subdirectories.

Vendor Processor Toolset Toolset
family id directory

ARM Ltd. (SDT, ADS) ARM RM AMX402\TOOLRM

Thumb RM AMX422\TOOLRM

ARM Ltd. (RVDS) ARM RV AMX402\TOOLRV

Thumb RV AMX422\TOOLRV

IAR Systems AB ARM AR AMX402\TOOLAR

Thumb AR AMX422\TOOLAR

Mentor Graphics 68000 MR AMX532\TOOLMR

MetaWare PowerPC MW AMX382\TOOLMW

ARM MW AMX402\TOOLMW

Thumb MW AMX422\TOOLMW

MIPS32 MW AMX442\TOOLMW

Metrowerks PowerPC ME AMX382\TOOLME

ARM ME AMX402\TOOLME

Thumb ME AMX422\TOOLME

ColdFire ME AMX512\TOOLME

68000 ME AMX532\TOOLME

Paradigm Systems (32-bit) 80x86 PD AMX722\TOOLPD

TASKING (formerly Intermetrics) 68000 IM AMX532\TOOLIM

Wind River PowerPC DA AMX382\TOOLDA

(Diab-SDS tools) ColdFire DA AMX512\TOOLDA

68000 DA AMX532\TOOLDA

10 KADAK Getting Started with AMX

Toolset Caveats

The AMX Tool Guide is meant to serve as a guide to the proper use of the software
development tools with which AMX has been used. The guide is NOT meant to replace
the manuals provided with the tools. In fact, from time to time, the information in the
AMX Tool Guide will be superceded by newer releases of the tools.

KADAK tries to keep the AMX Tool Guide current but the number and frequency of tool
revisions makes it very difficult to do so. The following suggestions are offered to allow
you to use new tool releases without necessarily waiting for KADAK to validate the tool.

Do not try to mix and match your tools unless they are designed to work together. For
example, one vendor's linker cannot necessarily link object modules produced by the
another vendor's C compiler, even if the vendors claim to support the same object format.

It is especially important to use tools in proper revision order. For instance, new releases
of a linker will usually link previous libraries and object modules. But the old linker may
not handle new libraries created with a new copy of the librarian.

If you alter any AMX source module or rebuild any AMX object module using a new
release of a tool, it is advisable to rebuild all AMX modules with the new tool. Follow
the directions in Appendix D of the AMX User's Guide for rebuilding the AMX Library.

When you make object or library modules, do not expect to generate files which exactly
match those delivered by KADAK. Many C compilers, assemblers, linkers and librarians
insert source filename and path information in the output modules. They also may insert
compilation time and date information in the files. Consequently, two sequential
compilations of a single, unaltered file may produce two correct object modules which do
not match byte for byte.

You may also find the embedded path information to be very aggravating when you port
the libraries to a different machine for testing. You may find that your debugger cannot
locate the source code for the module which you are testing because the path used to
compile the module does not exist on the test machine.

Toolset Tip

File extensions .S, .O and .A are used throughout this
manual for assembly language, object and library files
respectively. Other extensions such as .ASM, .OBJ or .LIB
may be used by some toolsets.

Getting Started with AMX KADAK 11

1.6 Program Groups
When AMX, TAPS or KwikLook are installed, a program group is created for quick access
via the Windows Start menu to the corresponding installed components. The program
group includes the shortcuts described in this chapter.

Installation Notes

A shortcut called Read Me uses the Windows NotePad utility to open a text file describing
the installed product. This is the same text file which is presented for your viewing at the
completion of the installation process.

Uninstall

A shortcut called Uninstall initiates the removal of the installed files.

AMX Configuration Manager

A shortcut called AMX Configuration Manager is created in the AMX program group to start
the AMX Configuration Manager to create or edit your AMX parameter files.

Manuals

The AMX and KwikLook manuals are provided in Adobe Acrobat PDF format. The
installer will create a shortcut for each manual to invoke the Acrobat Reader for online
viewing of the manual. A copy of the Acrobat Reader is provided with AMX in case you
need it installed.

A shortcut called KwikLook Help will be created so that you can view the KwikLook Help
Manual using the Windows help facility.

A shortcut called TAPS User's Guide will be created so that you can view the TAPS
manual using your HTML document browser.

If support for your toolset's IDE is provided with AMX, a shortcut called IDE Guide will
be created so that you can use your HTML document browser to view the instructions for
using AMX within that IDE.

Task-Aware Debuggers

When you install KwikLook for a task-aware debugger, the program group will usually
contain a shortcut to start the debugger for task-aware operation with KwikLook. In some
cases, additional shortcuts will be created to launch different variants of the debugger for
use with a simulator or remote target monitor or with a special BDM or JTAG
connection.

12 KADAK Getting Started with AMX

1.7 Uninstalling AMX, TAPS or KwikLook

When AMX, TAPS or KwikLook are installed, a program group is created for quick access
to their components via the Windows Start menu. A shortcut called Uninstall is created in
each program group to initiate the removal of the installed files.

You can also uninstall AMX, TAPS or KwikLook using the Add/Remove Programs service
available in the Windows Control Panel.

AMX

If you uninstall the version of AMX identified by KADAK part number PNnnn-1, the
AMXnnn installation subdirectory will be deleted, including all files contained therein.

TAPS

If you uninstall TAPS, the TAPS302 installation subdirectory will be deleted, including all
files contained therein.

KwikLook

If you uninstall KwikLook, the KWK302 installation subdirectory will be deleted, including
all files contained therein.

The KwikLook files, if any, which are duplicated in the installation directory of your task-
aware debugger are not removed. To delete these files so that your debugger installation
has no KwikLook remnants, follow the instructions provided in the KwikLook User's Guide.

Warning!!!

Do not uninstall AMX, TAPS or KwikLook without first
making a backup copy of the corresponding installation
directory. This is especially important if you have made
alterations to any AMX, TAPS or KwikLook files or if you
have stored files of your own in any of their installation
subdirectories.

Getting Started with AMX KADAK 13

2. AMX Sample Program

2.1 Sample Program Operation

System Description

An AMX Sample Program is provided to illustrate the ease with which an AMX system
can be created. The sample includes all of the software elements which make up a real
AMX system. A listing of the actual sample code is provided in this chapter.

In order to let you get started quickly, the AMX Sample Program is designed to operate
with only a processor and memory. Timing can be "simulated" so that there is not even a
need for a hardware clock. Although a console device is required for displaying text
strings one line at a time, even it can be omitted if necessary.

The AMX Sample Program uses two AMX timers to periodically send messages at
different priorities to a message exchange. A printing task extracts messages from the
exchange, decodes each message and displays the information as a text string on the
console device. A low priority task delays for sixty seconds and then initiates a shutdown
to terminate execution of the AMX Sample Program. A very low priority background
task simulates AMX clock ticks if a hardware clock is not available.

Components

The system is implemented using the following AMX elements: two Restart Procedures,
one Exit Procedure, a Print Task, a Shutdown Task, a Background Task, two timers and
one message exchange.

The application Restart Procedures, Exit Procedure, Timer Procedures and tasks are
coded in C. Because there is so little code required to implement this system, it is
lumped into the single source file CJSAMPLE.C.

Every AMX application includes two configuration modules. One describes the system
from the AMX perspective. The other identifies the target hardware environment.

The AMX System Configuration Module (a C source file) is constructed from the
parameters in a User Parameter File, a text file which can be created and edited using the
AMX Configuration Builder. In this sample, the Restart and Exit Procedures, the Print
Task, the timers and the message exchange are predefined in this module.

The AMX Target Configuration Module (an assembly language module) is constructed
from the parameters in a Target Parameter File, a text file which can also be created and
edited using the AMX Configuration Builder. In this sample, the simulated clock ISP is
identified in the Target Parameter File.

These three components must be compiled and assembled and linked with the AMX
Library to form an executable program which can be run by your target hardware
simulator or downloaded to your target hardware for execution.

14 KADAK Getting Started with AMX

Operation

The AMX Sample Program begins like a regular C program in the main() function. The
AMX RTOS is launched from main(). After AMX has initialized itself and built all of
the predefined tasks and timers and the message exchange, it calls each of the
application's two Restart Procedures.

The first Restart Procedure starts the two timers, sends a sign-on message to the message
exchange and triggers the Print Task.

The second Restart Procedure creates the Shutdown Task and the Background Task and
triggers both of them.

Once the Restart Procedures have been executed, AMX enters its task scheduler and
thereafter assumes full responsibility for proper prioritized, multitasking execution of the
application tasks.

The Print Task waits for messages to arrive on the message exchange. As each message
is received, the task translates the information in the message into a text string and
displays the string on the console device.

As soon as the Print Task finishes displaying the sign-on message, it blocks waiting for
the next message. The Shutdown Task begins and delays for one minute before it
initiates a shutdown of the AMX system.

When the Print Task and Shutdown Task are no longer active, the Background Task runs.
If the sample has been built to use a real hardware clock, the task simply ends. Otherwise
the task runs forever, simulating hardware clock ticks.

The two timers are periodic. As each timer expires, AMX restarts the timer and calls the
associated application Timer Procedure. Each of these sends a message to the message
exchange. The message identifies the timer (timer 1 or timer 2) and provides the value of
the AMX clock tick counter at the instant the timer expired.

When the Shutdown Task initiates the system shutdown, AMX calls the application Exit
Procedure which stops the two timers, sends a sign-off message to the message exchange
and then waits for the Print Task to print the sign-off message.

Once the Exit Procedure completes, AMX shuts down and returns to the main() function
from which it was launched.

Getting Started with AMX KADAK 15

Console Device I/O

The AMX Sample Program requires a console output device to print simple text
messages, one line at a time. All console output is directed through a simple console
interface which supports only single character output. One of three device I/O methods
can be used.

The Sample Program can be built to use the C library function putchar() for character
output. This method allows the Sample Program to be run by debuggers and/or target
hardware simulators which provide a console window accessible via standard C runtime
library functions.

For systems without any console support, the Sample Program can be built to insert all
console characters into a character array cj_records[]. Pointers to the text strings are
inserted into a record array cj_recordlist[]. You can then use your debugger to
breakpoint in the main() function upon return from AMX and display the content of
either of these arrays.

If you are using any of the evaluation boards on which AMX has been exercised by
KADAK, you can build the Sample Program to use the board support module and serial
I/O (UART) driver delivered with AMX. In this case, console I/O will be directed
through the serial driver's polled I/O interface function chuart() to the console
connected to one of the serial ports on the evaluation board.

Sample Program Output

The following messages appearing on the console terminal in the sequence shown
confirm the proper operation of the AMX Sample Program.

AMX Sample System begins.

Timer 2: message priority 2 at 1 ticks
Timer 1: message priority 3 at 1 ticks
Timer 1: message priority 3 at 101 ticks
Timer 2: message priority 2 at 201 ticks
Timer 1: message priority 3 at 201 ticks
Timer 1: message priority 3 at 301 ticks
Timer 2: message priority 2 at 401 ticks
Timer 1: message priority 3 at 401 ticks
.
.
.
Timer 2: message priority 2 at 5601 ticks
Timer 1: message priority 3 at 5601 ticks
Timer 1: message priority 3 at 5701 ticks
Timer 2: message priority 2 at 5801 ticks
Timer 1: message priority 3 at 5801 ticks
Timer 1: message priority 3 at 5901 ticks

AMX Sample System ends.

16 KADAK Getting Started with AMX

Sample Program Listing

The application code for the AMX Sample Program can be viewed in source file
CJSAMPLE.C. The following partial listing of that file illustrates the main elements which
make up this simple AMX system. For simplicity, details of the console I/O interface
and the clock simulation by the Background Task have been omitted from the listing.

#include <stdio.h> /* Standard I/O Header */
#include "cjzzz.h" /* AMX Headers */

/* External references */
extern CJ_ID prtskid; /* Print Task id */
extern CJ_ID prtmxid; /* Message exchange id */
extern CJ_ID tmr1id; /* Timer 1 id */
extern CJ_ID tmr2id; /* Timer 2 id */
void CJ_CCPP chbrdinit(void); /* Initialize board */

/* Forward references */
void CJ_CCPP sdtask(void); /* Shutdown Task */
void CJ_CCPP bgtask(void); /* Background Task */

/* Send a message */
void msgsend(char *msgp, int priority, int wait);
void concfg(void); /* Configure serial I/O device */
void conouts(char *bufferp); /* Output character string */

/* Local variables */
#define SDPRIORITY 30 /* Shutdown Task priority */
#define SDSTKSZ 2048 /* Shutdown Task stack */
static unsigned int sdstack[SDSTKSZ/sizeof(int)];

#define BGPRIORITY 40 /* Background Task priority */
#define BGSTKSZ 2048 /* Background Task stack */
static unsigned int bgstack[BGSTKSZ/sizeof(int)];

/* Application message structure */
struct appmsg {

char *string; /* Message string */
CJ_T32U tick; /* AMX tick value */
};

/* Main Program */

int main()
{

chbrdinit(); /* Initialize board (if needed)*/
cjkslaunch(); /* Launch AMX */
return (0);
}

Getting Started with AMX KADAK 17

/* Restart Procedure 1 */

void CJ_CCPP rr1(void)
{

cjtmwrite(tmr2id, 1L); /* Start timers */
cjtmwrite(tmr1id, 1L);

/* Send message at priority 0 */
msgsend("AMX Sample System begins.\n\n", 0, CJ_NO);

cjtktrigger(prtskid); /* Trigger print task */
}

/* Restart Procedure 2 */

void CJ_CCPP rr2(void)
{

CJ_ID taskid;

cjtkcreate(&taskid,
"SHDN",
sdtask, /* Task procedure */
sdstack, /* Task storage */
SDSTKSZ, /* Storage size */
0, /* Attributes= 0 */
SDPRIORITY, /* Priority */
0); /* Not time sliced */

cjtktrigger(taskid); /* Start Shutdown Task */

cjtkcreate(&taskid,
"BGND",
bgtask, /* Task procedure */
bgstack, /* Task storage */
BGSTKSZ, /* Storage size */
0, /* Attributes= 0 */
BGPRIORITY, /* Priority */
0); /* Not time sliced */

cjtktrigger(taskid); /* Start Background Task */
}

18 KADAK Getting Started with AMX

/* Print Task */

void CJ_CCPP prtask(void)
{

char buffer[80];
union {

struct cjxmsg maxmsg; /* Maximum sized AMX message */
struct appmsg amxmsg; /* Application message */
} umsg;

concfg(); /* Configure I/O device */

for (;;) { /* Wait forever for messages */
cjmxwait(prtmxid, &umsg, 0, 0);

/* Format string into buffer */
sprintf(buffer, umsg.amxmsg.string, umsg.amxmsg.tick);

conouts(buffer); /* Print the string */

cjtkmsgack(CJ_EROK); /* Acknowledge message */
}

}

/* Shutdown Task */

void CJ_CCPP sdtask(void)
{

cjtkdelay(cjtmconvert(60000L)); /* Wait one minute */
cjksleave(0, CJ_NULL); /* Shut down AMX */
}

/* Exit Procedure */
/* NOTE: Since cjksleave is called by the Shutdown Task, */
/* this procedure executes in the context of that task. */

void CJ_CCPP exproc(void)
{

cjtmwrite(tmr1id, 0L); /* Stop timers */
cjtmwrite(tmr2id, 0L);

/* Wait for sign-off message */
msgsend("\nAMX Sample System ends.\n", 0, CJ_YES);
}

Getting Started with AMX KADAK 19

/* Timer Procedure 1 */

void CJ_CCPP timer1(CJ_ID timerid, void *unused)
{

(void) timerid;
(void) unused;

msgsend("Timer 1: message priority 3 at %lu ticks\n", 3, CJ_NO);
}

/* Timer Procedure 2 */

void CJ_CCPP timer2(CJ_ID timerid, void *unused)
{

(void) timerid;
(void) unused;

msgsend("Timer 2: message priority 2 at %lu ticks\n", 2, CJ_NO);
}

/* Send a message */

void msgsend(
char *msgp, /* String pointer */
int priority, /* Message priority (0 to 3) */
int wait) /* Wait = CJ_YES or CJ_NO */
{

struct appmsg amxmsg;

amxmsg.string = msgp; /* Construct AMX message */
amxmsg.tick = cjtmtick();

/* Send message; may wait */
cjmxsend(prtmxid, &amxmsg, wait, priority);
}

20 KADAK Getting Started with AMX

2.2 Building the AMX Sample Program

Quick Start

Before you can build the AMX Sample Program, you must first be familiar with your
software development tools. You must know how to run the C/C++ compiler, the
assembler and the linker/locator to construct an executable program module. You must
also know how to use the debugger to load and execute the program, whether using a
target simulator or real hardware.

The AMX Sample Program is provided in several forms ready for use with toolset XX.
Each variant supports a particular hardware environment in which the sample has been
tested. The source code for each implementation resides in its own subdirectory within
toolset directory TOOLXX\SAMPLE.

The source code for the simplest AMX Sample Program will be found in toolset directory
TOOLXX\SAMPLE\MEFIRST. As the directory name suggests, you should start with this
example because it has no hardware dependencies beyond the need for a simple console.

There are four steps needed to build the AMX Sample Program:
Compile the AMX Sample Program file CJSAMPLE.C
Compile the AMX System Configuration Module file CJSAMSCF.C
Assemble the AMX Target Configuration Module file CJSAMTCF.S
Link and locate the AMX Sample Program to create an executable load module

You can build the AMX Sample Program using command line tools within a Windows
Command Prompt window. At the command line prompt, go to toolset directory
TOOLXX\SAMPLE\MEFIRST and run your make utility to build the program from make
specification file CJSAMPLE.MAK. The make utility will create a load module
(CJSAMPLE.OUT or equivalent) suitable for execution under the control of the debugger
provided with toolset XX.

Getting Started with AMX KADAK 21

Using Your Tools

If you are using toolset XX, you should examine all of the files in toolset directory
TOOLXX\SAMPLE\MEFIRST. In particular, review the toolset dependent tailoring file
named CJZZZCC.INC. This file, included within make file CJSAMPLE.MAK, is used by the
make utility to run the compiler, assembler and linker for toolset XX.

Review tailoring file CJZZZCC.INC to see exactly how the compiler and assembler are
used to create the object files which form the sample system. Observe the recommended
command line switches for compiling and assembling application modules for use with
AMX using the most recent tools for toolset XX. Also note the command line switches
required to link and locate the final load module. These switches are documented in the
AMX Tool Guide.

Within directory TOOLXX\SAMPLE\MEFIRST you will also observe one or more toolset
dependent link, locate, memory or command specification files. These files have the
filename CJSAMPLE and an extension such as LKS, LOC, LCF, CFG or CMD. The files specify
the target memory layout and indicate the order in which object and library files are to be
linked.

The link/locate files are used by the make file CJSAMPLE.MAK to create the AMX Sample
Program load module. You should review these files to observe the special directives, if
any, required by the linker and/or locator provided with toolset XX.

Memory Layout

The AMX Sample Program from directory TOOLXX\SAMPLE\MEFIRST can be used
without modification if toolset XX provides a Windows based target processor simulator.
Otherwise, the sample must be downloaded and executed on a hardware platform.

Examine source file CJSAMPLE.C and look for the comment block which indicates
whether the sample can be run using the toolset's simulator or must be downloaded to
target hardware. In the latter case, the sample will be linked using the memory
configuration common to the greatest number of boards available at KADAK. You may
have to revise the sample link/locate specification file to adapt the memory layout for
your specific board.

Console Output

If the sample can be run using a simulator and the simulator supports standard C console
output, then the sample program will direct its output to the simulator's console window.
Otherwise, the sample program will direct its console output to the character array
cj_records[] in target memory.

Examine source file CJSAMPLE.C and look for the definition of symbol K_CONSOLE. If it
specifies K_STDIO, then the sample will use the standard C library function putchar()
for console output. If it specifies K_RECORD, then console output will be inserted into
character array cj_records[].

22 KADAK Getting Started with AMX

Running the Sample Program

Use the debugger provided with toolset XX to load the AMX Sample Program into the
processor's target memory, whether simulated or on a real hardware platform. Start the
sample with a breakpoint on the entry to function main() to confirm that you have
successfully executed the C startup code and are ready to start AMX. Then proceed with
a breakpoint following the call to procedure cjkslaunch which launches AMX.

If the debugger or simulator console window is being used for console output, you will
see the AMX Sample Program messages appearing in that window at periodic intervals.
If the console window output is buffered, the display of messages may occur in bursts.

If console output is being directed to character array cj_records[] in target memory,
there will be no visible evidence that the program is running.

The AMX Sample Program will continue to execute until the AMX clock indicates that
one minute has elapsed. Since the AMX clock ticks are generated by a Background Task
and not by a real hardware clock, the AMX clock will not keep proper time. When
running on an actual high frequency processor, the AMX clock will appear to run
quickly. When running under a simulator which mimics a low frequency processor, the
AMX clock will appear to run slowly.

When the AMX system shuts down, your final breakpoint in main() will be reached. If
there has been no visible console output, you can use the debugger to dump the text in
character array cj_records[] or the strings in pointer array cj_recordlist[] to
confirm proper operation of the sample.

Getting Started with AMX KADAK 23

Board Specific Sample Programs

The AMX Sample Program is also delivered ready for use on each of the hardware
platforms on which AMX has been tested by KADAK. Each of the board specific
examples is located in a separate subdirectory within the toolset dependent directory
TOOLXX\SAMPLE. All of the files needed to build the AMX Sample Program for a specific
board are located in the subdirectory devoted to that board. The boards and their
subdirectories are listed in the AMX product manifest file TOOLXX\MANIFEST.TXT.

A number of additional source files are required to adapt the AMX Sample Program for
use on a particular board. These target sensitive files include a clock driver, a serial
driver and a board support module.

The AMX Clock Driver uses a hardware timer embedded in the processor chip, or
interfaced to it, to provide the fundamental timing source for AMX. These drivers are
described in Chapter 5 of the AMX Target Guide. The clock driver is a separate C source
file which must be compiled and linked as part of the Sample Program.

An AMX serial driver is provided for the UART device, if any, embedded in the
processor chip or interfaced to it. The driver operates in a polled fashion to transmit
characters to or receive characters from an attached console terminal. The serial driver is
a separate C source file which must be compiled and linked as part of the Sample
Program. By default, the driver sets the serial port to operate at 9600 baud with one start
bit, one stop bit and 8-bit characters without parity. To alter the configuration of the
serial device, you must edit the driver source file following the instructions provided
within the file. All serial I/O operations offered by the driver are accessed through the
driver's chip support function chuart().

An AMX board support module includes the minimal services needed to use AMX on a
particular hardware platform. Most of these modules include a chip support function
chbrdinit() which must be called from main() before AMX is launched. The interrupt
controller, if present, is conditioned to inhibit all interrupts except the hardware timer
interrupt being used for the AMX clock. The function also completes any special board
setup required by AMX but not done by an on-board monitor or by the C startup code.
The board support module is a C or assembly language source file which must be
compiled or assembled and linked as part of the Sample Program.

You can build the board specific AMX Sample Program using command line tools within
a Windows Command Prompt window. At the command line prompt, go to the board
specific subdirectory in toolset directory TOOLXX\SAMPLE and run your make utility to
build the program from make specification file CJSAMPLE.MAK. The make utility will
create a load module (CJSAMPLE.OUT or equivalent) suitable for execution under the
control of the debugger provided with toolset XX.

You should examine tailoring file CJZZZCC.INC to identify the command line switches
which are used to compile or assemble each of the board specific source files and to link
the final load module. You should also examine the link/locate specification files to
determine the recommended order in which the object files should be linked.

24 KADAK Getting Started with AMX

2.3 Using a Toolset IDE

With proper care, you can build the AMX Sample Program from within the Integrated
Development Environment (IDE) provided by toolset XX. To do so, you must create a
project and import the relevant source files according to the rules established by the IDE.
Import AMX Sample Program source file CJSAMPLE.C, the System Configuration
Module CJSAMSCF.C and board specific C files into the list of C/C++ source modules.
Import the Target Configuration Module CJSAMTCF.S and board specific assembly
language files into the list of assembly language source modules.

To compile or assemble the source files, the project must have access to the AMX header
files. It may be sufficient to specify the path to directory TOOLXX\DEF for include file
searches. Alternatively, you may have to import the AMX header files from directory
TOOLXX\DEF into a list of include files.

To compile or assemble the source files, you must set the appropriate command options.
The required command line switches are documented in the AMX Tool Guide and
illustrated in tailoring file CJZZZCC.INC. The equivalent IDE switches may have to be
established within the IDE using check boxes, radio buttons, pull down lists or custom
command line dialogs.

To produce an executable module, the project must have access to the object files to be
linked, to the AMX Library in directory TOOLXX\LIB and to the relevant C/C++ runtime
libraries. In some cases, you may also have to link toolset dependent AMX object files
from directory TOOLXX\LIB and/or special C/C++ library object modules. It may be
sufficient to provide the path to these libraries and object files. Alternatively, you may
have to import the libraries and/or library object files into a list of required modules.

You may be able to adapt the link/locate specification file provided with the AMX
Sample Program to specify the memory layout for the executable module. If not, you
will have to define the hardware memory layout in a manner dictated by the IDE.

Once the project is specified, the build is usually initiated with a simple press of a toolbar
button. However, there may still be a number of IDE or debugger configuration settings
which must be established before the debugger can successfully load and execute the
resulting AMX Sample Program load module.

Toolset Tip

Browse the AMX installation directory for a subdirectory
named MANUALS\TOOLXX\IDE. If the directory exists, it
will contain the file AMX_XX.HTM, a document in HTML
format describing in complete detail how to build an AMX
application using the IDE for toolset XX.

Getting Started with AMX KADAK 25

2.4 The TAPS Sample Program

The AMX Prototyping System (TAPS) includes a copy of the AMX Sample Program
ready for use on a Windows workstation using the Microsoft Visual Studio. The TAPS
installation includes a Visual Studio project with all of the components needed to create
and run the AMX sample.

From the Visual Studio File menu, select Open... and browse to find the TAPS sample
project file TAPS302\SAMPLE\SAMPLE.DSP. The project file list will include the required
source files, organized as illustrated in the screen shot shown below.

To build and execute the AMX Sample Program, simply click on the Go button on the
Visual Studio toolbar. All source files will be compiled and linked with the TAPS
version of the AMX Library. The resulting AMX Sample Program will then be loaded
and executed by the Visual Debugger.

The TAPS version of the AMX Sample Program uses the simulated clock provided by
TAPS. Character output is directed to the TAPS console window.

The AMX Sample Program is constructed just like any other AMX application intended
for use under TAPS. Step by step instructions are presented in the TAPS User's Guide.
You can access the manual directly from the Windows Start menu via the link in the
TAPS program group. Alternatively, you can view the manual by using your Windows
browser to open the installed TAPS file TAPS302\MANUAL\TAPS302.HTM.

26 KADAK Getting Started with AMX

This page left blank intentionally.

Getting Started with AMX KADAK 27

3. Creating an AMX Application

3.1 The AMX Configuration Process
Before you can construct any AMX application, you must first decide how to best use
AMX for your intended purpose. What tasks will you require and how will they interact?
Will your tasks need timers, semaphores or mailboxes or any of the many other services
offered by AMX? These are but a few of the questions which your design must address.

It is assumed that you will read the AMX User's Guide to become familiar with the AMX
kernel, its managers and the subset of features best suited for your application. You will
also have to become familiar with the material in the AMX Target Guide so that you can
incorporate the necessary AMX support for your target hardware configuration.

Then, with your software design in hand, you can use the AMX Configuration Manager
to create the configuration files on which your AMX application depends.

The AMX Configuration Manager

If you created an AMX program folder when you installed AMX, you can start the AMX
Configuration Manager from the Windows Start menu. Locate the AMX program folder
and select the AMX Configuration Manager from the menu. Alternatively, select Run... from
the Windows Start menu, browse to the AMX installation directory AMXnnn\CFGBLDW and
run the program CJnnnCM.EXE.

28 KADAK Getting Started with AMX

The Configuration Manager is used to construct your AMX System Configuration
Module from a User Parameter File as described in Chapter 15 of the AMX User's Guide.
To create a new configuration, select New User Parameter File from the File menu. To edit
an existing configuration such as that used for the AMX Sample Program, select Open...
from the File menu and browse for file CJSAMSCF.UP in one of the board dependent
directories in toolset directory TOOLXX\SAMPLE.

Getting Started with AMX KADAK 29

The Configuration Manager is also used to construct your AMX Target Configuration
Module from a Target Parameter File as described in Chapter 16 of the AMX User's
Guide. To create a new configuration, select New Target Parameter File from the File
menu. To edit an existing configuration such as that used for the AMX Sample Program,
select Open... from the File menu and browse for file CJSAMTCF.UP in one of the board
dependent directories in toolset directory TOOLXX\SAMPLE.

30 KADAK Getting Started with AMX

Finding Template Files

The AMX Configuration Manager generates the System Configuration Module from a
C language template file provided with AMX. It generates the Target Configuration
Module from an assembly language template file. Because the template source files are
toolset dependent, the files for toolset XX are installed in toolset directory TOOLXX\CFG.

The AMX Configuration Manager maintains a Windows registry entry which identifies
the filename and location of the template file for each module which the manager can
generate. If the manager determines that the registry entry does not exist, it creates the
entry and installs defaults for all of its template files. The defaults are derived as follows.

If you have only installed AMX support for toolset XX, then the manager will determine
that the default template files reside in toolset directory TOOLXX\CFG.

However, if you have installed support for multiple toolsets, you will have multiple
TOOLXX directories, each with its own unique toolset id XX. In this case, the manager will
pick one of the toolsets and choose the template files from the CFG directory for that
toolset as its defaults.

To examine or revise any of the manager's template file choices, select Templates... from
the File menu. To view the template used to generate a particular file, pick the selector
icon for that file from the module list. You can then edit the template's path and filename
or browse to find the equivalent template file for a different toolset. If you need
assistance, press the manager's F1 help key while viewing its Templates dialog.

The UP Parameter File Extension

KADAK uses the file extension UP to identify text files containing user parameters.
Whenever the AMX Configuration Manager runs, it registers file extension UP with
Windows so that the manager can be invoked to edit a parameter file by simply double
clicking on the parameter file's name.

If you use more than one version of AMX, each with its own Configuration Manager,
you should not double click on parameter filenames to edit the parameter files. Windows
will simply run the most recently used manager, whether or not it is the proper manager
to be used to edit that particular parameter file. This situation would arise if you were
concurrently developing AMX applications for different target processors. For example,
you might be using AMX PPC32 in a PowerPC product and AMX 386/ET on a PC. The
situation would also exist if you are using two different releases of the same AMX kernel
to maintain different revisions of your AMX based product.

If you must use multiple configuration managers, always start the manager of interest
first and then use its File menu or toolbar icon to open the parameter file to be edited.
Alternatively, you can drag the parameter file directly into the manager of interest, if it is
running, or onto the manager's program icon, link or filename.

Getting Started with AMX KADAK 31

3.2 Building Your AMX Application
The sheer volume of detail provided with AMX may at first be daunting. However,
constructing an AMX application is actually a fairly simple process, once you have
decided how to best use AMX for your intended purpose.

It is recommended that you adapt elements of the AMX Sample Program to operate on
your target hardware, thereby using the sample as a template for the creation of your own
AMX application. To assist you in this process, the following guidelines are offered for
using toolset XX to develop your AMX system.

1. Review the board specific implementations of the AMX Sample Program in the
board subdirectories of toolset directory TOOLXX\SAMPLE. Find the board with the
processor variant and/or hardware complement which most closely matches yours.
Copy the files from that board directory into your own working directory.

2. Most AMX applications will use a hardware clock for timing. Review the AMX
Clock Driver used by the sample that you selected in Step 1. If it matches your
hardware clock, keep it. Otherwise, see Chapter 5 of the AMX Target Guide for a
complete description of each of the available clock drivers. Select the driver which
most closely matches your target hardware clock.

Each AMX Clock Driver is provided as a C source file. The clock driver may
depend on low level services provided by a board support module. The source file
for the clock driver and its board support module (if any) will be found in one of the
board specific subdirectories in toolset directory TOOLXX\SAMPLE. Copy these files
to your working directory.

If necessary, edit the selected clock driver and its board support module to match
your hardware specifications. In particular, be sure to configure your hardware clock
to generate interrupts at the frequency required by your application.

Your AMX Target Configuration Module (see Step 6) will include a clock Interrupt
Service Procedure (ISP) which dismisses the clock interrupt, keeps the hardware
clock running and informs AMX that a hardware clock tick has occurred. The AMX
Configuration Manager automatically generates this clock ISP for you.

Some hardware clocks are so simple that the code to dismiss the clock interrupt can
be generated directly into the AMX Target Configuration Module by the AMX
Configuration Manager. In other cases, a clock interrupt handler in the clock driver
source module will be called upon to dismiss the clock interrupt and keep the
hardware clock running. In either case, the clock ISP must be declared as specified
in the clock driver description in Chapter 5 of the AMX Target Guide.

3. The AMX Sample Program includes a board support module which provides the
minimal board support services required to use AMX and its clock driver on a
particular hardware platform. If you already have a board support module from
Step 2, skip to Step 4. If not, review the one for the sample selected in Step 1. If it
is suitable for use with your hardware, keep it. Otherwise, replace it with the
alternate board support module (if any) which provides a better match. If necessary,
edit the selected board support module to adapt it for use with your hardware.

32 KADAK Getting Started with AMX

4. If you have a serial port available in your hardware configuration, you may wish to
use it for simple console I/O operations while testing your AMX application. One of
the AMX serial drivers may be suitable for this purpose. Examine the serial drivers
in the board directories and copy the one for the UART most similar to yours. If
necessary, edit the serial driver to match your device requirements.

Chip support function chuart() is used to access the services provided by the serial
driver. Your application must call this function to initialize the serial interface.
Thereafter, the function can be used to sense the status of the device, transmit
characters and fetch received characters.

5. Use the AMX Configuration Manager (see Chapter 3.1) to create a User Parameter
File describing your AMX application requirements. Then, from the File menu,
select Generate... to create your System Configuration Module, a C source file that
must be compiled and linked with your application. This process is described in
greater detail in Chapter 15 of the AMX User's Guide.

A good starting point is to use the Configuration Manager to edit the User Parameter
File CJSAMSCF.UP provided with the sample program that you selected in Step 1.
You can view the system parameters that were used to build the sample and, if
appropriate, simply edit the settings to describe your own AMX application.

6. Use the AMX Configuration Manager (see Chapter 3.1) to create a Target Parameter
File defining your target hardware, clock ISP and application ISPs. From the File
menu, select Generate... to create your Target Configuration Module, an assembly
language source file that must be assembled and linked with your application. This
process is introduced in Chapter 16 of the AMX User's Guide. The processor
dependent details are described in Chapter 4 of the AMX Target Guide.

A good starting point is to use the Configuration Manager to edit the Target
Parameter File CJSAMTCF.UP provided with the sample program that you selected in
Step 1. You can view the target parameters that were used to build the sample and, if
appropriate, simply edit the settings to describe your hardware configuration.

Pay particular attention to the manner in which the AMX clock is specified in the
ISP Definition window. Your clock ISP definition must meet the specifications for
the AMX Clock Driver that you selected in Step 2.

7. Your AMX application must have a source module which includes the main()
function from which AMX is eventually launched. The AMX System Configuration
Module created in Step 5 must specify at least one Restart Procedure which initiates
some operation (such as triggering a task) to start your system. It is recommended
that you use the AMX Sample Program source file CJSAMPLE.C as a template for
your main application module, stripping the variable and function declarations for
which you have no need.

Review the AMX startup module TOOLXX\SRC\CJnnnUF.C and, if your needs
warrant, add enhancements to the default AMX error handling procedures.

Getting Started with AMX KADAK 33

8. You must compile or assemble all of the source modules which make up your AMX
application. Besides your own application modules, these include:

AMX Clock Driver Step 2
AMX board support module Step 3
AMX serial driver (optional) Step 4
AMX System Configuration Module Step 5
AMX Target Configuration Module Step 6
AMX startup module CJnnnUF.C Step 7
Main application module Step 7

Link the resulting object modules with the AMX Library and your C Library to
create your AMX application load module.

The AMX Tool Guide describes how to use the assembler, compiler and linker for
toolset XX when building an AMX application.

The Build Process

The AMX Sample Program can be constructed by a make utility from the make
specification file CJSAMPLE.MAK. Recommendations for building the sample within the
Integrated Development Environment (IDE) for a particular toolset were also presented
in Chapter 2.3. Either of these methods can be used to construct your own AMX
application. The choice is yours.

You should examine tailoring file CJZZZCC.INC to identify the command line switches
which are used to compile or assemble the source files and to link the final load module.
You should also examine the toolset dependent link/locate specification files to determine
the recommended order in which the object files should be linked.

It is recommended that you construct your AMX application in your own directory,
separate from the AMX installation directory. You can then set Windows environment
variables to provide the path information needed by your software development tools to
find the AMX files (header files, object modules and libraries) required to build your
system. If necessary, add the same AMX path information to your make file or to your
IDE configuration settings.

The AMX System Configuration Module and Target Configuration Module are source
files which must be generated using the AMX Configuration Manager. The manager is
an interactive tool which you must use outside your build process, similar to the way you
use a text editor to edit other source files. The configuration files generated by the
manager should be kept with your other application source files so that each can be
compiled or assembled as just another component of your AMX system.

Toolset Tip

When building your AMX application, be sure to follow
the toolset specific guidelines presented in the AMX Tool
Guide.

34 KADAK Getting Started with AMX

3.3 A Make File for AMX Applications

If you use a MAKE utility to control the construction of your AMX application, you should
adhere to the following guidelines.

The following discussions assume that you have installed the AMX product with part
number PNnnn-1 in directory C:\KADAK\AMXnnn as described in Chapter 1.2. Your make
specification file should define macros such as OSPATH to provide the complete path to
the AMX installation directory and YOURSRC for access to your source files.

OSPATH = C:\KADAK\AMXnnn
YOURSRC = C:\YOURAPP\SOURCE

AMX Header Dependencies

Do not blindly list the generic AMX include file CJZZZ.H as the only AMX dependency
in your make specification. Your C files include CJZZZ.H, a duplicate of file CJnnn.H,
for convenience and to ease the porting of your application to other versions of AMX.

However, the file CJZZZ.H is the file least subject to change. It is the AMX header files
with names like CJnnnXXX.H which file CJZZZ.H includes that are most likely to undergo
future modification. Therefore, examine header file CJZZZ.H and identify the AMX
header files which it unconditionally includes. Declare your application files to be
dependent on this subset of the AMX header files.

Your application files will not be dependent on the AMX header files which are
conditionally included by file CJZZZ.H. Those files are only used when compiling AMX
source modules. For this reason, your AMX System Configuration Module should be
declared dependent on all of the files listed in the generic file CJZZZ.H.

In your dependency lists, be sure to provide the path information required by the make
utility to locate the AMX header files for toolset XX in AMX installation directory
$(OSPATH)\TOOLXX\DEF.

System Configuration Module

Your AMX System Configuration Module SYSCFG.C can be created using the AMX
Configuration Manager. However, you can alternatively generate and compile the
module under the control of your MAKE utility as follows.

Use the AMX Configuration Manager to create or edit your AMX User Parameter File
SYSCFG.UP. Do not ask the Configuration Manager to generate the source module
SYSCFG.C. That will be done in your make specification file.

Declare your System Configuration Module SYSCFG.O to depend on the User Parameter
File SYSCFG.UP and on the complete list of AMX header files listed in the generic file
CJZZZ.H. The make directive to create SYSCFG.O consists of two statements, one to make
the source file SYSCFG.C and one to compile it.

Getting Started with AMX KADAK 35

The System Configuration Module source file SYSCFG.C for use with toolset XX can be
generated using the AMX Configuration Generator as follows:

$(OSPATH)\CFGBLDW\CJnnnCG.EXE $(YOURSRC)\SYSCFG.UP
$(OSPATH)\TOOLXX\CFG\CJnnnCG.CT $(YOURSRC)\SYSCFG.C

The Configuration Generator CJnnnCG.EXE combines the information from your User
Parameter File SYSCFG.UP with the AMX System Configuration Template File
CJnnnCG.CT to produce file SYSCFG.C.

Your make specification file must also include the directive to compile source module
SYSCFG.C as described in the AMX Tool Guide for toolset XX.

Target Configuration Module

Your AMX Target Configuration Module HDWCFG.S can be created using the AMX
Configuration Manager. However, you can alternatively generate and compile the
module under the control of your MAKE utility as follows.

Use the AMX Configuration Manager to create or edit your AMX Target Parameter File
HDWCFG.UP. Do not ask the Configuration Manager to generate the source module
HDWCFG.S. That will be done in your make specification file.

Declare your Target Configuration Module HDWCFG.O to depend on the Target Parameter
File HDWCFG.UP and on the AMX header file CJZZZK.DEF, a duplicate of file
CJnnnK.DEF. The make directive to create HDWCFG.O consists of two statements, one to
make the source file HDWCFG.S and one to assemble it.

The Target Configuration Module source file HDWCFG.S for use with toolset XX can be
generated using the AMX Configuration Generator as follows:

$(OSPATH)\CFGBLDW\CJnnnCG.EXE $(YOURSRC)\HDWCFG.UP
$(OSPATH)\TOOLXX\CFG\CJnnnHDW.CT $(YOURSRC)\HDWCFG.S

The Configuration Generator CJnnnCG.EXE combines the information from your Target
Parameter File HDWCFG.UP with the AMX Target Configuration Template File
CJnnnHDW.CT to produce file HDWCFG.S.

Your make specification file must also include the directive to assemble source module
HDWCFG.S as described in the AMX Tool Guide for toolset XX.

36 KADAK Getting Started with AMX

3.4 Using the AMX Prototyping System (TAPS)
The AMX Prototyping System (TAPS) can be used to build and test much of your AMX
application on a Windows workstation using the Microsoft Visual Studio. Simply follow
the step by step instructions presented in the TAPS User's Guide. Within the guide, the
Visual Studio project for the AMX Sample Program provided with TAPS is used to
illustrate the process.

You can access the manual directly from the Windows Start menu via the link in the
TAPS program group. Alternatively, you can view the manual by using your Windows
browser to open the installed TAPS file TAPS302\MANUAL\TAPS302.HTM.

When you create an AMX application for use under TAPS, you will not require an AMX
Target Configuration Module since the target hardware is assumed to be unavailable.
You will still need your AMX System Configuration Module.

Note that you must use the copy of the AMX Configuration Manager provided with
TAPS to edit your AMX User Parameter File. The manager must be run outside the
Visual Studio project. The edited parameter file must be added to the project file list, as
illustrated by file SAMPLESCF.UP in the screen shot below. The project must use the
TAPS System Configuration Template File to generate the System Configuration Module
SAMPLESCF.C which can then be compiled and linked with your application.

Getting Started with AMX KADAK 37

Debugging With TAPS

The Visual Studio Debugger is used to test your AMX application running under TAPS.
Start the debugger and run to a breakpoint in the main() program. You can then proceed
to debug your application using all of the features available to you in the normal Visual
Studio debugging environment.

TAPS includes its own variant of the KwikLook Fault Finder giving you full task-
awareness when testing your AMX application. KwikLook is invoked from the custom
icon on the Visual Debugger toolbar. You use KwikLook as described in Chapter 4.1, just
as though you were using it with your target hardware debugger.

38 KADAK Getting Started with AMX

This page left blank intentionally.

Getting Started with AMX KADAK 39

4. Debugging an AMX Application

4.1 Using the KwikLook Fault Finder
The KwikLook Fault Finder is a Windows utility for testing real-time embedded systems
developed using KADAK's AMX multitasking kernel. KwikLook gives you quick
fingertip access to everything controlled by AMX and its managers:

Tasks Semaphores
Timers (ticks and ms) Event groups
Mailboxes and message exchanges Buffer pools
Message contents Memory pools

All messages queued in mailboxes or message exchanges are visible along with the
sender's identification. If no messages are present, KwikLook shows the tasks, if any,
which are waiting for a message to arrive.

KwikLook shows which tasks own resources and which ones are waiting for them. The
state of all events in each event group can be viewed complete with a list of the tasks
waiting for specific event combinations.

The memory usage display gives a snapshot of current allocation by the Memory
Manager. Unexpected fragmentation is readily observable. Similarly, free and used
buffers are shown for each buffer pool.

Using KwikLook, there are no surprises, no guessing. Disappearing resources can be
uncovered. Unexpected task activity is exposed. Even stack overflow and underflow can
be observed.

Method of Use

The KwikLook Fault Finder adds true AMX task-awareness to a variety of popular
Windows based debuggers. Your target AMX system must be connected to a
conventional host PC running Windows. KwikLook access to your AMX application is
then provided by your task-aware remote debugger, a Windows program running on the
host PC.

The KwikLook Fault Finder is implemented as a Windows DLL which is attached to your
debugger when the debugger is started. KwikLook is activated by you using a toolbar icon
or pull-down menu item provided by the debugger.

40 KADAK Getting Started with AMX

KwikLook Displays

The KwikLook Fault Finder is run from the toolbar icon or pull-down menu item provided
by your task-aware debugger. KwikLook can only be activated once AMX has been
started and your application has been stopped at a debugger breakpoint. Once running,
KwikLook fetches and displays the state of your AMX application in the display window
as illustrated below.

At any time, a context sensitive explanation of the display content can be accessed via the
Help button. When finished reviewing the state of your AMX application, press the
Dismiss button or close the KwikLook window to return to the task-aware debugger.

Specific AMX object information is accessed via the radio button selections. The Detail...
button can then be used to fetch even more information about the particular AMX object
selected from the list.

Getting Started with AMX KADAK 41

The KwikLook Summary... button provides access to the System Summary shown below.

42 KADAK Getting Started with AMX

4.2 Breakpoints and Tracing
When using a debugger on your AMX system, it is important to be aware of subtle
effects which may occur.

When you hit a debug breakpoint, AMX is completely unaware that your debugger is
actually executing in the context of the task in which the breakpoint occurred.
Fortunately, with most debuggers there is no problem. The debugger usually inhibits
external interrupts and switches to a private debugger stack. When you trace or proceed
from the breakpoint, the debugger restores the task's stack and resumes execution with
interrupts restored.

Debuggers which operate this way can easily be used to debug an AMX application. Just
remember that real time stops when a breakpoint is encountered. It only resumes when
you allow your system to free-run again. When you proceed from a breakpoint, all
device interrupts which have gone pending while at the breakpoint will suddenly generate
a flurry of ISP activity with possible task switching side effects.

If you trace single instructions (not whole C statements), the debugger may never actually
give up control of the processor. Therefore, while you are single stepping past a
breakpoint, your AMX system may remain temporarily shut off because interrupts are
disabled.

If you allow your system to run with another breakpoint set several instructions or
statements beyond the first breakpoint, it is possible that you may never hit your second
breakpoint in the task you are debugging.

For example, suppose that you trace over a call to send a message to a mailbox. If there
is a higher priority task waiting at that mailbox for a message, AMX will immediately
suspend the task you are debugging and allow the other higher priority task to resume. If
the higher priority task reaches a body of untested code and crashes, you may never hit
your second breakpoint in the task which you are testing. As long as you are aware of
this property, your debugging should proceed smoothly.

Tracing through reentrant code shared by several tasks can be very difficult. When you
set a breakpoint in such a procedure, the breakpoint will be hit by the first task to call the
procedure. That task may not be the task of interest. Furthermore, when you try to
proceed to another breakpoint in the same procedure, you may find that when you hit the
breakpoint, you are running in the context of a higher priority task that preempted the
first task and called the shared procedure.

Getting Started with AMX KADAK 43

4.3 Debugging the Launch
Many first time AMX users are frustrated by the inability to locate bugs in their startup
code, Restart Procedures or AMX Configuration Module which preclude a successful
AMX launch.

Startup is no-man's land. It is a gray area in which your startup code (or your loader) has
started AMX but a solid AMX operating environment has not yet been established.

When AMX is executing Restart Procedures, it is in an intermediate state with no user
task yet running. Therefore, operations which tasks can perform are not yet acceptable.

You can usually use your debugger to step through your own Restart Procedures although
there is no such guarantee. Do not try to step through the AMX procedures which your
Restart Procedures call. Once your last Restart Procedure has been called, you must let
AMX free run. Any attempt to breakpoint your way through the remaining AMX startup
code will almost certainly fail.

If you get through your Restart Procedures and they appear to have worked (i.e. AMX
calls did not return error indications and your code only touched devices and data for
which it is responsible), then your AMX launch should work. If it does not, the most
probable fault is one of the following:

• AMX took a fatal exit and unconditionally halted (see the next topic regarding Fatal
Exit Procedures).

• Your AMX Configuration Module contains invalid or unresolved information which
leads to improper AMX operation. (This will be unlikely if you used the
Configuration Manager and Generator to create your module.)

• You failed to include an AMX option in your configuration which is vital to AMX
success. For example, you expect to use AMX timing features but you have not
included a clock ISP of any kind.

• Your Restart Procedures caused the AMX Kernel Stack to overflow. You must not
sprinkle printf statements in Restart Procedures for testing purposes.

• You started AMX with your processor interrupt system disabled but you also had an
outstanding, unserviced interrupt pending at that time. Since AMX enables interrupts
before calling your Restart Procedures, the device interrupt will be acknowledged by
the processor before you even have a chance to install its AMX interrupt handler.
Your system will probably fail without the handler needed to service the device.

• You started a device which produces an interrupt but a tested device ISP has not yet
been provided to service the device.

• You started an interval timer which expired and caused AMX to execute an untested
Timer Procedure.

• You created an interval timer but never started it and therefore your Timer Procedure
is never executed.

• You created a task but never triggered it or sent it a message and it therefore never
executes.

44 KADAK Getting Started with AMX

Look to your Restart Procedures and your AMX Configuration Module for the source of
your startup problems. No startup errors have yet been traced to AMX. (It doesn't rule
out AMX; it just makes it unlikely.) Many startup problems have eventually been traced
to modifications made to pieces of AMX test program code "borrowed" and adapted for a
new application.

Using a Fatal Exit Procedure

Do not ignore the use of the AMX Fatal Exit Procedure as a very powerful debugging
tool. If your System Configuration Module contains anomalies which preclude proper
AMX operation, AMX may abort a launch and take a fatal exit.

If you have not modified AMX Fatal Exit Procedure cjksfatal in module CJnnnUF.C to
suit your needs, AMX will halt with interrupts disabled forcing you to initiate a power
reset to recover. However, you can intercept this fatal shutdown by revising the AMX
Fatal Exit Procedure which, although very restricted in what it can do, can at the very
least give you an indication that the fault has occurred. Read Chapter 14.1 of the AMX
User's Guide for the rules.

Getting Started with AMX KADAK 45

4.4 Debugging Caveats
If the debugger does not switch to a private stack, it may use more stack than has been
provided for the task in which the breakpoint occurred. The debugger will therefore
probably crash in the AMX task or at least force a crash to occur when you proceed from
the breakpoint.

If the debugger executes with interrupts enabled, strange effects may be noticed. If the
debugger's stack is too small to meet AMX task stack specifications, the debugger will
probably crash with the first interrupt that occurs after the breakpoint.

Even if the debugger stack is adequate, strange effects may occur. Since interrupts are
enabled, all interrupt driven activity continues to occur while the debugger is stopped at
the breakpoint awaiting your instructions. If, as a consequence of interrupt activity, a
task of higher priority than the breakpointed task becomes ready to run, AMX will
perform a task switch. The higher priority task will run and your debugger will
temporarily disappear until the higher priority task completes or becomes blocked again.

This disruption of the debugger's operation may be enough to cause some remote
debuggers to lose communication with their host computer and appear to crash.

Never use your debugger's QUIT command to leave your AMX system. Your AMX
system must invoke cjksleave to force an orderly AMX shutdown. When AMX
attempts to return to your main() program, the debugger will indicate that your program
under test has terminated. Only then can you use your debugger's QUIT command to
terminate the debug session.

Never use a debugger's command (such as Ctrl-C) to try to stop a "run-away" AMX
system. This mechanism is not compatible with your multitasking environment and often
leads to catastrophic failure. The debugger must only gain control via breakpoints,
watchpoints or traces.

You may find source file path information embedded in object and library modules to be
very aggravating when you move an application to a different machine for testing. You
may find that your debugger cannot locate the source code for the module which you are
testing because the path used to compile the module does not exist on the test machine.

Undefined AMX Procedures

When debugging an AMX application, you may observe that some AMX procedure
names appear to be missing from your symbol table. These AMX procedures are mapped
directly to other equivalent procedures by macro definitions in the AMX header files.

For example, the AMX Resource Manager procedures map directly to AMX Semaphore
Manager procedures. In this particular case, you can override the mapping and force an
actual set of Resource Manager procedures to be loaded by editing file CJnnnAPP.H to
include the following statement (see Appendix D.2 of the AMX User's Guide).
Recompile all application modules which reference Resource Manager procedures.

#define CJ_OPTRM

46 KADAK Getting Started with AMX

Extraneous Interrupts at Startup

As indicated in Chapter 4.3, strange things can happen if you inhibit device interrupts and
then launch AMX with an unacknowledged device interrupt pending. The interrupt will
be acknowledged by the processor as soon as AMX enables interrupts, just before it calls
your first Restart Procedure. Consequently, the interrupt will occur with unpredictable
and often catastrophic results before you even have a chance to install a suitable AMX
device interrupt handler.

The unexpected interrupt is frequently a clock interrupt left pending from a previous
debugging session. For example, suppose that you successfully load and start debugging
your AMX application. You reach a breakpoint but realize that you have gone too far.
You use your debugger to reset your system, possibly even reloading your program and
then start a new debug session. Unfortunately, your debugger may not totally mimic the
effects of a hardware reset. Hence, a clock interrupt may still be pending from your prior
debug session, even though it is masked off by the debugger. When the debugger starts
your program for the second time, you may get a clock interrupt the instant the debugger
enables interrupts. The AMX clock interrupt handler which was installed during your
first debug session will respond to the interrupt and try to service the clock, completely
unaware that AMX is no longer even in the picture. As expected, the result is chaos.

Take another example. Suppose that you successfully load and start debugging your
AMX application, only to detect a problem in the coding of one of your tasks. You exit
from your debugger, repair the fault, rebuild your system and start a new debug session.
Unfortunately, you may have had a device interrupt pending at the time that you stopped
your first debug session. The debugger may have masked off your device interrupt,
leaving you blissfully unaware of the pending doom. When your application starts the
second time, bang! You get an interrupt from a device that you thought was reset.

Often your debugger is the source of the unexpected interrupt. Consider a debugger that
uses a serial port or Ethernet connection to your target hardware to load and execute your
AMX application. Assume that a debug monitor in the target uses an interrupt driven
device driver to communicate with the debugger. The debugger finishes downloading
your application and instructs the monitor to start your program. If the monitor simply
inhibits the device's interrupt request at the processor's interrupt controller without first
resetting or disabling the device, you may encounter an interrupt from the device when
you least expect it. For example, such an interrupt could occur if your application
updated the interrupt controller's interrupt mask and inadvertently enabled the specific
device interrupt.

Getting Started with AMX KADAK 47

5. AMX Programming Hints

5.1 Application Portability
If you are coding in C and expect to port your AMX application to a different processor,
observe the following portability rules.

Include the generic AMX header file CJZZZ.H in your application C source modules.
Then, to recompile a source module for a different target processor, you simply use the
generic AMX header file CJZZZ.H provided with AMX for that target. Editing of every
source module will not be required.

Make all AMX task and object identifiers be of type CJ_ID.

Make all AMX timer values be of type CJ_TIME.

Use only the least significant 16 event flags of each event group. This will permit
designs for 32-bit processors to be readily ported to 16-bit processors.

Do not use unions to extract char or short int values from long or pointer variables.
The byte reversal of little endian versus big endian products will kill you.

If you use the keyword CJ_CCPP to define the parameter passing rules when declaring
public procedures, it will ease porting C code from one C compiler to another.

Use the AMX cjcfvolXXXX procedures to fetch volatile variables so that porting code to
C compilers that do not support the keyword volatile will be possible.

Use the identifier CJ_NULL for a NULL data pointer and CJ_NULLFN for a NULL function
pointer so that your code will easily port to processors on which data and code must be
treated differently.

Align AMX messages on 32-bit boundaries to improve execution speed and to ease
porting your application to 32-bit processors.

48 KADAK Getting Started with AMX

5.2 AMX Stack Allocation
Each AMX task requires a separate storage region for use as a task stack. AMX also
allocates a Task Control Block for the task from the storage provided. These stacks must
be large enough to accommodate the deepest possible level of procedure nesting. Use the
following rules to calculate stack sizes:

1. Start with the minimum task stack size required by AMX. This stack is used to
store the task state when it is interrupted. The minimum stack allows a task
procedure with no local variables to call any AMX procedure and return to AMX.

2. Determine the stack size for each procedure called by the task. Most C
procedures will require a minimum of eight bytes for storage of return address
and saved registers plus storage for all calling parameters and automatic variables.
On RISC processors, the stack frame requirements can be quite large.

3. Find the procedure nesting path that requires the most stack space and add the
stack sizes of each procedure to the minimum task stack. Recursive procedures
must have a stack size large enough to allow for the maximum recursion depth.

The stack provided by your C's startup module will only be used by your main()
program as it starts your AMX system. This stack is only used by AMX during the
launch and after a shutdown.

Stack Checking

Some C compilers generate a runtime stack check at the entry point to every C procedure.
The check verifies that, after local variable storage has been allocated on the stack, stack
still remains available for use.

This stack checking is usually a compilation option which can be inhibited with a switch
during compilation. Unfortunately, you may find that the C Runtime Library is delivered
with its modules compiled with stack checking enabled. Hence, if your program requires
these runtime library procedures, you will have stack checking in effect.

The AMX Tool Guide for the toolset which you are using will provide instructions, if
necessary, for defeating the compiler's stack checking.

Getting Started with AMX KADAK 49

Stack and Data Alignment

By design, all AMX data structures are 32-bit aligned to ensure optimal performance on
processors which support 32-bit access to memory.

AMX also ensures that stack alignment is maintained throughout all AMX code paths.
However, the AMX design intent can only be achieved if the private AMX data region
and all AMX and application stacks are properly aligned to begin with. Most 32-bit
processors require stacks to be 32-bit aligned. However, there are processors which
require 64-bit and even 128-bit alignment. When coding functions in assembly language,
be sure to adhere to your processor's stack and data alignment specifications.

Typically it is your program linker which ensures proper alignment. In some cases, you
may have to use a linker directive to specify the alignment to be used for specific sections
(code, data, etc.) from each module in your link. All data and stacks in the AMX System
Configuration Module will then be properly aligned.

Failure to meet the alignment requirements of your hardware can lead to strange timing
effects or even run-time faults. For example, while testing AMX on one particular
processor, the AMX data region and stacks were inadvertently not 32-bit aligned.
Consequently, every 32-bit data and stack access required two memory accesses. Timing
measurements indicated that many AMX procedures took approximately 30% longer to
execute.

50 KADAK Getting Started with AMX

5.3 Choosing a Synchronization Method

Task Wait/Wake

Use the AMX task wait/wake mechanism to synchronize tasks to simple, one of a kind,
slowly occurring events in ISPs or other tasks. It is most suitable for events occurring at
100 Hz or slower rates on 10 MHz processors. If timeout is required, use procedure
cjtkwaitm.

A task can use the pending wake feature as follows to guard against losing events. The
task calls cjtkwaitclr to clear any pending wake condition. Then the task initiates the
action that will produce the event of interest. The task then calls cjtkwait to wait for the
event. If the event occurs before the task can enter the wait state, the task will continue to
run without waiting because of the pending wake posted by the event's cjtkwake call.

The task id can be used as a convenient boolean indicator. Create an event variable of
type CJ_ID and set it to CJ_IDNULL to indicate that no task is waiting for the particular
event. When a task is about to wait for the event, it can set the event variable to the task's
id (using cjtkid) thereby informing the event handler that a task is waiting and
identifying the task at the same time.

Task Trigger

Use task triggers for rapidly occurring events in which event counts are significant and
little, if any, information is required by the task to service the event. A Restart Procedure
initiates the action that will produce the events of interest. The event handler calls
cjtktrigger to trigger the task which will service the event. The task executes once to
completion for each trigger.

Use a circular list to pass 8, 16 or 32 bits of information to the task. The event handler
adds the information to the bottom of the list and the task retrieves the parameters from
the top of the list. Larger amounts of data can be handled by using buffers from a buffer
pool. The event handler can pass the buffer pointer on the list and the task can release the
buffer when it completes processing the information in it.

Counting Semaphore

A counting semaphore can be used exactly like the task trigger mechanism just described.
However, there is more task switching overhead required since the task state must be
saved and restored when a task waits for a semaphore.

Unlike a task trigger, the counting semaphore gives the task greater flexibility in
determining when and where within its code sequence the event wait should take place.

A task creates a counting semaphore with an initial count of 0. Then the task initiates the
action that will produce the events of interest. The task then calls cjsmwait repetitively
to wait for the events.

Getting Started with AMX KADAK 51

A counting semaphore can also be used when any one of several tasks must be
synchronized to an event. For example, assume that two server tasks are available to
handle events and it does not matter which of the servers handles a particular event. Each
of the server tasks can wait on a single counting semaphore which is signaled by the
event handler. The server tasks respond to events in FIFO fashion.

Resource Semaphore

Always use a resource semaphore to control access to anything like numeric
coprocessors, non-reentrant libraries, data base records or disk files. The resource
semaphore provides the necessary characteristic of ownership.

The resource semaphore provides the additional benefit of allowing nested ownership.
Consequently, a task which owns a resource can successfully call application procedures
which unknowingly try to reserve the same resource. Since the task calling the procedure
already owns the resource, the procedure is allowed to execute without being blocked as
would otherwise occur if a simple binary counting semaphore had been used to control
access to the resource.

Mailbox or Message Exchange

The AMX mailbox and message exchange offer information passing synchronization
methods. The event handler creates a message which it sends to a mailbox or message
exchange. Any task can ask for or wait for a message from the mailbox or message
exchange, thereby synchronizing with the event handler which generated the message.

A task, having received a message, knows that a particular event has occurred and has a
complete description of the event in the task's copy of the message generated by the event
handler.

A great deal of flexibility is provided by this method of synchronization. As with most
AMX synchronization methods, you can control the order in which tasks queue waiting
for messages. In the case of a message exchange, you can also control the order of
priority in which messages are sorted at the exchange, thereby reordering the sequence in
which the events are actually serviced.

Message Exchange Task

You can use a message exchange task for synchronization in much the same fashion as a
trigger task. The event handler creates a message which it sends to the message exchange
task's private message exchange. There is no need to trigger such a task. The task
automatically receives the message, processes it and ends, ready to receive the next
message when it becomes available.

52 KADAK Getting Started with AMX

Ack-Back Messages

Use the AMX ack-back facility to avoid the need for extra task to task synchronization
semaphores. A task can send a message to a mailbox or message exchange at which
another task has agreed to rendezvous. The sending task waits for its message to be
delivered and acted upon. The receiving task processes the message and acknowledges
its receipt, allowing the sending task to resume execution.

A message exchange task's private message exchange can also be used for this type of
synchronization.

Event Group Flags

Use event flags strictly for handling asynchronous, combinatorial event logic. Also use
event flags when multiple tasks must be concurrently synchronized to exactly the same
event condition(s).

Each event flag in an event group should be altered by one, and only one, event handler.
Abiding by this restriction ensures that state driven flags always match the actual event
condition and that pulsed event flags are only pulsed when the event occurs.

Event processing by the Event Manager is inherently slower than other synchronizing
methods because races among sequentially occurring events must be resolved
sequentially to ensure that specific event combinations are always detected in the order in
which they occur. The Event Manager uses the AMX Kernel Task to resolve such races.

Event flags can still be attached to high-speed interrupt driven events without
compromising interrupt response. Race resolution is deferred by the AMX Interrupt
Supervisor to the Kernel Task.

This extra switch to the Kernel Task, although essential for event race resolution, can and
should be avoided by using any of the previously described methods for simple ISP/task
synchronization.

Warning

Do not use event flags unless a task must synchronize to
multiple, asynchronous events or multiple tasks must
synchronize to the same event.

Getting Started with AMX KADAK 53

5.4 AMX Caveats

Task Trigger vs Message Queuing

An AMX message exchange task is a special kind of task with a private message
exchange bound to it by AMX as described in Chapter 14.6 of the AMX User's Guide.

You must not call procedure cjtktrigger to trigger an AMX message exchange task. A
task of this type is automatically triggered by AMX when it is bound to its private
message exchange by your call to procedure cjtkmxinit.

A basic AMX task executes once each time it is triggered. The task receives no
parameters when it runs.

By contrast, the AMX message exchange task is triggered once, and only once, by AMX.
Thereafter, the task procedure is called once each time a message arrives in the task's
message exchange. The message is passed to the task by value or by reference as a
parameter to the task procedure.

Message Envelopes

AMX uses message envelopes for passing messages to mailboxes and to message
exchanges. However, AMX also uses message envelopes for passing messages to the
AMX Kernel Task. Kernel messages are generated if a task or ISP must defer an
operation to the Kernel Task in order to resolve an otherwise disastrous race condition.
You must always provide some message envelopes for use by AMX. A minimum of ten
(10) envelopes is recommended.

AMX Message Length

AMX messages originate as user defined blocks of 12 or more sequential bytes of
memory. The maximum length (n >= 12) is determined by you when you create your
System Configuration Module. If you declare the message length to be greater than 12,
you must edit AMX header source file CJnnnAPP.H and define symbol CJ_MAXMSZ to
have the value specified by your configuration.

Whenever you send a message to a mailbox or to a message exchange, you point to
memory containing the message. AMX copies all n bytes into an AMX message
envelope and attaches the envelope to the appropriate message queue. The sender may
be a task, ISP, Timer Procedure, Restart Procedure or Exit Procedure.

When a task gets a message from a mailbox or message exchange, AMX removes the
envelope from the message queue and copies all n bytes from the envelope to the storage
area provided by the task. Failure to provide at least n bytes of alterable storage for the
message is a common fault. Remember that AMX will copy n bytes.

54 KADAK Getting Started with AMX

Common Message Problems

On some 32-bit processors, the AMX message copy may be slow if the message source
(or destination) is not 32-bit aligned. On others, a data alignment exception may be
generated. The following examples illustrate BAD coding techniques which may lead to
slow execution or faults at runtime.

extern CJ_ID mailboxid;

const char messageA[] = "Fixed long msg!";
const struct {

char xopcode;
char xparameter;
} messageB = {5, 'P'};

void badcode(void)
{

cjmbsend(mailboxid, messageA, CJ_NO);
cjmbsend(mailboxid, &messageB, CJ_NO);
}

The first message, messageA, is a constant character array which most C compilers will
place in memory at a long aligned address. However, since the array is a character array,
the compiler is free to align the array at any byte address if it so desires. If the array
messageA is not long aligned, the AMX procedure cjmbsend may execute slowly
because of the 32-bit access at the improperly aligned address.

A similar problem may exist with messageB. Again, most C compilers will place a
structure in memory at a long aligned address. However, some compilers will relax the
structure alignment to just meet the minimal alignment needs of the structure members.
In this example, since all members of structure messageB are characters, the compiler is
free to locate the structure on any character boundary.

Even if the compiler does long align messageA, a problem remains. The whole message
string, "Fixed long msg!", will not be sent to the mailbox unless you have increased the
AMX message size beyond its default minimum length of 12 bytes. Only the first 12
characters, i.e. "Fixed long m", will be sent in the AMX message. Also note that a
trailing null character '\0' will not be present in the AMX message.

Getting Started with AMX KADAK 55

AMX Shutdown

If you use the AMX procedure cjksleave to stop your AMX system and return to the
point of launch, you must first ensure that all device operations and AMX task activity
have come to an orderly halt. The responsibility is yours; AMX does not know anything
about your application and how it works.

During the exit process, the AMX task scheduler continues to operate. All AMX
managers remain functional.

Since Exit Procedures run in the context of the task which initiated the shutdown by
calling cjksleave, they are free to use any of the AMX task synchronization methods to
wait for other tasks to do their windup processing. Of particular use is the message
acknowledgment facility. An Exit Procedure associated with a task having special
shutdown responsibilities can send a shutdown message to the task and wait for an ack-
back from the task.

Once all of your Exit Procedures have been executed, AMX shuts down the AMX kernel
and all of the AMX managers. At that point, if you still have any interrupt activity
pending which requires AMX for service, your system will most probably crash.

Code Size and Speed

Predefine tasks and other AMX objects in your System Configuration Module. It is
easier and error free and you will eliminate the extra application code needed to
dynamically create these AMX resources.

If you do not need message ordering by priority, use mailboxes only. Message exchanges
require more memory and are slightly slower to use. Do not create message exchange
tasks.

If you increase the AMX message envelope size, the AMX data area will grow
accordingly and AMX message passing will be marginally slower. Do not forget that
AMX occasionally uses these envelopes for its own private purposes.

Restrict the number of tasks and other AMX objects to reasonable limits for your
application. If your number of tasks exceeds 30, call KADAK for technical support. A
well designed application should rarely exceed 15 tasks.

Do not use the C interrupt keyword or pragma on any procedure unless you are
purposely coding a nonconforming ISP. The AMX ISP root eliminates the need for this
non-portable C feature. AMX Interrupt Handlers can be coded as standard C procedures.

Do not use cjksfind or cjksgbfind in ISPs or Timer Procedures to find ids of AMX
resources. These tag lookup procedures are relatively slow. If an ISP or Timer
Procedure needs some AMX id, find the id at launch time or in some task and make the
id permanently available in a private id variable. Note that the AMX ids of all predefined
objects are always available in the id variable provided with the object's definition.

Do not use cjtmconvert in ISPs or Timer Procedures to convert milliseconds to AMX
ticks. This procedure is relatively slow. Compute the value at launch time or in some
task and make the value permanently available in a private variable of type CJ_TIME.

56 KADAK Getting Started with AMX

5.5 Interrupt Latency
The term interrupt latency is defined in Chapter 4.1 of the AMX Timing Guide. The
measured AMX interrupt latency is the longest interval during which AMX inhibits all
external interrupts. Specific latency figures are published in the AMX Timing Data
sheets for different processors and toolsets.

If interrupt latency is of particular importance in your application, there is one guideline
which, if followed, will lead to improved performance. Avoid the use of AMX Scheduler
Hooks. These hooks are described in Chapter 14.3 of the AMX User's Guide. The worst
case AMX interrupt latency occurs in the path through your hooks into the AMX
scheduler.

Getting Started with AMX KADAK 57

6. C Programming Primer

6.1 C Programming Practices
With the exception of your AMX Target Configuration Module, all of your AMX
application modules can be coded in C. Tasks, Timer Procedures, Restart Procedures and
Exit Procedures are readily coded in C. Interrupt Service Procedures can also be coded in
C although assembler is recommended. Some procedures such as AMX Task Scheduler
hooks must be coded in assembler.

It is recommended that you thoroughly familiarize yourself with the User's Guide and
Library Reference Manual provided with the particular C compiler that you are using.

It is assumed that you are thoroughly familiar with the AMX User's Guide, the AMX
Target Guide for the processor of interest and the relevant chapter of the AMX Tool
Guide for the particular C compiler that you are using.

The use of C in a multitasking environment poses special difficulties. Some of the more
frequently encountered problems are described in this chapter.

Procedure Prototyping

The AMX header files include prototypes for all AMX procedures.

If your C compiler does not support prototyping, you will have to edit the AMX header
files to remove all formal parameter specifications from the procedure definitions.

AMX Typedefs

AMX uses a private handle to identify system objects such as tasks and timers over
which it has control. A handle is an unsigned integer identifying a particular object.

The AMX header file CJnnnCC.H includes the following C typedef of symbol CJ_ID:

typedef unsigned int CJ_ID;

All AMX identifiers provided to or received from AMX procedures are then declared to
be of type CJ_ID. If you code to this convention, your AMX application modules will be
more readily portable to versions of AMX for other processors.

The symbol CJ_IDNULL is also defined giving a valid and portable definition of a
non-existent id.

58 KADAK Getting Started with AMX

Global and Static Variables

Variables that are defined outside of any C procedure are known as global variables.
They may be accessed by any procedure that declares them to be external (extern). A
global variable resides in a single module (file). When a global variable is initialized to a
value, the initialization takes place in the module in which the variable resides.

A global variable can be made private to a module by declaring it to be static. A static
global variable can be accessed by all of the procedures in the same module but cannot be
accessed by any procedure in another module.

C allows global variables to be initialized. For example:

int variab = 0x1234;

This declaration (outside of any procedure) declares an integer with an initial value of
0x1234.

Initialized global variables are set to their initial value prior to starting your main()
program. Uninitialized global variables are set to zero. These initializations may not
take place in a ROM system. Refer to Chapter 6.4 for a more detailed discussion of C
startup requirements in ROMed systems.

Atomic Variable References

Global public variables present a particular hazard on processors whose architecture
precludes the atomic (indivisible) modification of memory. If two concurrently
executing tasks share a common public variable, then modifications of the variable must
be atomic. Each task wishing to modify the variable must read, modify and write the
variable in one indivisible sequence.

Suggestion

Eliminate global public variables and watch your system
error rate go down.

Getting Started with AMX KADAK 59

6.2 Structure Packing
Some compilers optimize storage alignment for speed, not for size. Furthermore, 16-bit
and 32-bit variables may have to be even aligned to avoid memory access exception
traps. Hence, many "gaps" in structures may exist as the compiler forces alignment of
fields for proper access on the processor.

You should coerce your C compiler to pack fields within structures which are used as
AMX intertask messages. An AMX message may be configured to be an arbitrary block
of 12 bytes (minimum) which is passed by value.

For example, on 32-bit processors the following AMX message includes 10 bytes of
information.

struct {
char c1;
int i1;
char c2;
long lv;
} msg;

However, if the C compiler forces 32-bit alignment of the integer and long variables in
this structure, the structure size will be 16 bytes. The last four bytes of this message will
not be transmitted by AMX since the message length exceeds the 12 byte AMX message
size assumed in this example.

Most C compilers provide an option to force byte alignment of variables at the expense of
marginally slower execution speed. Judicious choice of message structures can also be
used to eliminate the problem. For instance, if characters c1 and c2 are moved to follow
long lv in the example, the message length reduces to 10 bytes since gaps are avoided.

If your C compiler will not pack structures, be sure to set your definition of the AMX
message size to match your largest AMX message.

60 KADAK Getting Started with AMX

6.3 Reentrancy and Concurrent Execution
A procedure is reentrant if it executes properly even when it is interrupted and called
from the interrupting program. A reentrant procedure may not modify any variables at
fixed locations in memory (static or global variables). All variables must be local
(automatic variables).

Here is an example of a non-reentrant procedure:

/* Return x-squared + x (non-reentrant) */

int poly(int x)
{

static int tmp;

tmp = x + 1;
return(tmp * x);
}

This procedure is non-reentrant because tmp is declared static. Suppose that this program
is calculating the polynomial for x = 2. The program is interrupted just after the
assignment to tmp occurs with a value of 3. The interrupting program requires the
polynomial to be calculated for x = 3. It calls the procedure and the value 12 is returned.
However, tmp is left with the value 4; that is, 3 + 1. When the original program resumes,
it will return the value 8 instead of the correct value, 6. This problem may be corrected
by declaring tmp to be an automatic variable or a register variable.

A reentrant procedure may only call reentrant procedures. Calling non-reentrant
procedures will make it non-reentrant.

A routine need only be reentrant if it is called by more than one concurrently executing
procedure. For instance, tasks need not be reentrant but a routine called by more than one
task must be reentrant because tasks can execute concurrently.

Warning

Some procedures in your C Runtime Library may not be
reentrant. This is especially true of many transcendental
math procedures and some floating point procedures,
especially those which use a numeric coprocessor.

Getting Started with AMX KADAK 61

Concurrent execution within an AMX system is defined by the following rules:

1. Tasks execute concurrently with each other, with Interrupt Service Procedures
(ISPs), with Timer Procedures and with Exit Procedures. Tasks do not execute
concurrently with Restart Procedures.

2. Interrupt Service Procedures execute concurrently with tasks, with Timer
Procedures, with Exit Procedures and, in the case of nested interrupts, with other
ISPs. They may execute concurrently with Restart Procedures if you start your
devices in a Restart Procedure.

3. Timer Procedures execute concurrently with tasks, with ISPs and with Exit
Procedures. They do not execute concurrently with each other or with Restart
Procedures.

4. Restart Procedures may execute concurrently with ISPs if you start your devices
in a Restart Procedure. Restart Procedures do not execute concurrently with each
other or with any other procedure.

5. Exit Procedures execute concurrently with tasks, with Timer Procedures and with
ISPs. They do not execute concurrently with each other or with Restart
Procedures.

62 KADAK Getting Started with AMX

6.4 Using the C Runtime Library
Not all procedures in your C Runtime Library are reentrant. Floating point and math
routines are often not reentrant. File handling, I/O and memory allocation procedures
(fopen, fgets, printf, malloc, calloc, free, sbrk, scanf, etc.) are, in general, not
reentrant.

You must treat the error variable errno (and all variables like it) as meaningless. If a
task is preempted before it can read errno, the value of errno may be altered by C
library procedures called by higher priority tasks.

String conversion procedures such as strtok are not reentrant because they maintain
private pointers for use on subsequent calls. Most simple string manipulation and data
conversion procedures (strcpy, strcmp, atoi, isalpha, etc.) are reentrant and may be
used safely anywhere. If in doubt, assume the worst.

When calling non-reentrant procedures in a multitasking environment, you must protect
the code to avoid problems. One approach is to ensure, by design, that only one task at a
time ever calls the procedure.

If this approach is too restrictive, the AMX Semaphore Manager can be used to lock the
C Runtime Library whenever non-reentrant library procedures must be invoked. Treat
the library as a resource using a resource semaphore and then reserve the library prior to
any call to a non-reentrant library procedure. When you are finished using the library, be
sure to release the library for use by other tasks.

Memory Management and malloc

For most processors with a flat memory model, the C memory allocation procedures will
work properly. However, tasks cannot concurrently share malloc, free, etc. (or
procedures which call them) unless you treat such procedures as resources as described
above.

On processors with segmented memory architectures, the C memory allocation
procedures may fail. C libraries which assume that the memory heap is located
immediately above the stack segment will fail when using AMX because every task has
its own private stack segment.

Use the AMX Memory Manager if you require dynamic memory allocation. Have your
main() program call malloc to allocate the largest available region of memory possible.
Save the pointer to this region for use as an AMX memory section. Then, in a Restart
Procedure, create a memory pool and assign the memory section to it. Tasks can then
dynamically allocate memory from this memory pool.

Using Third-Party Libraries

Many AMX applications require your use of specialized third-party libraries for database
access, screen access, graphics, etc. These library packages are often not reentrant and
hence not sharable simultaneously by AMX tasks. They may be used in your AMX
system provided some form of protection is provided. Use a resource semaphore to
reserve the package while it is in use.

Getting Started with AMX KADAK 63

C Startup Code and ROM

Contrary to what some may say, most C compilers can be used to produce ROMable
code. The following guidelines may not be applicable to all AMX users. Much depends
upon the constraints of your application.

Initialized and uninitialized static data presents the biggest problem with ROMed code.
The C language includes no built-in features to simplify the problem of initializing static
variables which must exist in RAM with values that must come from ROM. When static
initialized data is defined in a C module it just becomes part of the data section.

Constants may also be placed in a data section and hence may not automatically be part
of your ROM image. You should also be aware that some C code generators
occasionally optimize code by creating private constants which are placed in the
initialized data section. This is especially prevalent on processors such as the Intel 80x86
with a segmented memory architecture.

String constants may also be placed in the initialized data section instead of in the code or
constant section. C compilers do this to meet the C language specification which permits
such strings to be altered at run time.

In order to embed your application in ROM, you will require a link and locate utility
which can place code, constant data, initialized data and uninitialized data into separate
regions of memory. A copy of the initialized data region must be physically present
somewhere in the ROM image but at an address distinct from its actual runtime location.
The C startup code must then copy the initialized data from the ROM to the required
runtime RAM location prior to calling your main() program.

64 KADAK Getting Started with AMX

6.5 Bootstrap and C Startup Code
Every target board and toolset has unique power on, processor setup, board initialization
and C startup requirements. Before AMX is launched, the unique hardware initialization
for the target board and software initialization for the C runtime environment must have
been done.

For some toolsets, the C startup code provided with the toolset XX compiler is inadequate
for use in embedded AMX applications. In such cases, AMX includes a replacement
startup module which you can tailor to your needs. To see if such a replacement module
is needed, refer to the file list in the AMX Sample Program link/locate file for toolset XX
in the board specific directory of AMX installation subdirectory TOOLXX\SAMPLE.

The C startup code must copy all initialized data from the program's ROM section to the
required runtime RAM location prior to calling your main() program. It is the C startup
code which also sets all uninitialized data to zero prior to calling main().

Most tool vendors include the source for the C startup code so you can change it to meet
your needs. If you choose to provide your own startup code, rename your main()
function and call the revised function from your C startup code. Otherwise, the mere
presence of a function with name main() may force your linker to load the C library
startup code, defeating your attempt to replace it.

Note that if you omit the C startup code, some C library procedures (especially those for
device I/O and math operations) may not be usable since you may have eliminated their
internal initialization. Many ROM based systems are unaffected by this constraint since
they require no general purpose device or floating point support.

If you replace the C startup code with your own implementation, it becomes your
responsibility to initialize the data regions of memory as described above.

	Cover
	Table of Contents
	1. Welcome to AMX
	1.1 Introduction to AMX
	1.2 Installing the AMX Software
	1.3 Installing the AMX Prototyping System (TAPS)
	1.4 Installing the KwikLook Fault Finder
	1.5 Choosing Your Toolset
	1.6 Program Groups
	1.7 Uninstalling AMX, TAPS or KwikLook

	2. AMX Sample Program
	2.1 Sample Program Operation
	2.2 Building the AMX Sample Program

	3. Creating an AMX Application
	3.1 The AMX Configuration Process
	3.2 Building Your AMX Application
	3.3 A Make File for AMX Applications
	3.4 Using the AMX Prototyping System (TAPS)

	4. Debugging an AMX Application
	4.1 Using the KwikLook Fault Finder
	4.2 Breakpoints and Tracing
	4.3 Debugging the Launch
	4.4 Debugging Caveats

	5. AMX Programming Hints
	5.1 Application Portability
	5.2 AMX Stack Allocation
	5.3 Choosing a Synchronization Method
	5.4 AMX Caveats
	5.5 Interrupt Latency

	6. C Programming Primer
	6.1 C Programming Practices
	6.2 Structure Packing
	6.3 Reentrancy and Concurrent Execution
	6.4 Using the C Runtime Library
	6.5 Bootstrap and C Startup Code

